Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality.
View Article and Find Full Text PDFInterspecific and intraspecific competition and facilitation have been a focus of study in plant-plant interactions, but their influence on plant recruitment of soil microbes is unknown. In this greenhouse microcosm experiment, three cover crops (alfalfa, brassica, and fescue) were grown alone, in paired mixtures, and all together under different densities. For all monoculture trials, total pot biomass increased as density increased.
View Article and Find Full Text PDFThe greatest threat to profitable peach production is cold damage to reproductive tissues. To better understand and mitigate cold damage in peach accurate and efficient assessment of floral bud cold hardiness (H) is critical. Differential thermal analysis (DTA) was optimized for efficient and precise detection of low-temperature exotherms (LTE) created by the freezing of supercooled intracellular water in peach floral primordia to determine H weekly during the dormant season.
View Article and Find Full Text PDFReplant syndrome (RS) is a global problem characterized by reduced growth, production life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological approach that could reduce RS in peach () orchards by developing a healthy soil bacteriome.
View Article and Find Full Text PDFManipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS).
View Article and Find Full Text PDF