Background: Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit(+) cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. Using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, we previously showed that these 2 cell types act synergistically.
Objectives: To more accurately model clinical applications for heart failure, this study tested whether the combination of autologous MSCs and CSCs produce greater improvement in cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy.
Unlabelled: Erythropoietin (EPO) has the potential to improve ischemic tissue by mobilizing endothelial progenitor cells and enhancing neovascularization. We hypothesized that combining EPO with human chorionic gonadotrophin (hCG) would improve post-myocardial infarction (MI) effects synergistically.
Methods: After MI, five to seven animals were randomly assigned to each of the following treatments: control; hCG; EPO; hCG + EPO, and prolactin (PRL) + EPO.
Rationale: The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes.
Objective: Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire.
Transplantation of olfactory ensheathing glial cells (OEG) may improve the outcome from spinal cord injury. Proof-of-principle studies in primates are desirable and the feasibility and efficacy of using in vitro expanded OEG should be tested. An intermediate step between the validation of rodent studies and human clinical trials is to study expanded primate OEG (POEG) xenografts in immunotolerant rodents.
View Article and Find Full Text PDFCessation of division is prerequisite for Schwann cell differentiation but regulation of this critical function is poorly understood. Heregulin/forskolin-induced growth of human Schwann cells (HSCs) in vitro was found to be strongly regulated by cell density and thus could model some aspects of negative growth-regulation in vivo. To better understand this phenomenon, the production of an autocrine growth-inhibitor and the role of contact-inhibition were investigated.
View Article and Find Full Text PDF