Publications by authors named "I S Katageri"

Fibre quality improvement in is one of the long thought objectives for sustainability of cotton improvement. The efforts to transfer alleles in to for enhanced fibre quality is still under process across the world. To meet the future fibre quality demand in India, here we report development of recombinant inbred mapping population that has huge potential for precise mapping of extra-long staple traits.

View Article and Find Full Text PDF

Cotton is an important crop that is continuously cultivated around the world. However, its production has decreased in recent times due to wide ranging insects and also current practices of using synthetic insecticides that are not precise and their residues impairing the biodiversity. Hence, the search for newer classes of efficient entomotoxic proteins continues.

View Article and Find Full Text PDF

Background: Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array.

View Article and Find Full Text PDF

Diploid cotton, due to its inherent problem of stamen brittleness, its found unsuitable for traditional method of hybrid seed production which involves hand emasculation followed by pollination. Due to shortfall in other methods viz., Genetic Male Sterility (GMS), as well as, Cytoplasmic Genetic Male Sterility (CGMS), hybrid seed production in diploid cotton becomes costly and thereby, covers less area among the total cotton grown area.

View Article and Find Full Text PDF

Premise Of The Study: Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles.

View Article and Find Full Text PDF