Publications by authors named "I S Haslam"

The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour.

View Article and Find Full Text PDF

Cholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle.

View Article and Find Full Text PDF

Skin is a comparatively accessible organ possessing many conserved regulatory and signaling pathways, drawing researchers from varied fields toward its study. Hair follicle (HF) biology in particular has expanded rapidly over the preceding decade, helping to shape and develop scientific knowledge across diverse areas of biomedical research, beyond the skin. The hope in compiling this review is to inspire more researchers to utilize the HF as an instructive biological model, bringing with them fresh perspectives and experience from differing fields of study.

View Article and Find Full Text PDF

Chemotherapy-induced hair loss (alopecia) (CIA) remains a major unsolved problem in clinical oncology. CIA is often considered to be a consequence of the antimitotic and apoptosis-promoting properties of chemotherapy drugs acting on rapidly proliferating hair matrix keratinocytes. Here, we show that in a mouse model of CIA, the downregulation of Shh signaling in the hair matrix is a critical early event.

View Article and Find Full Text PDF