Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM.
View Article and Find Full Text PDFGreat advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro.
View Article and Find Full Text PDFPreclinical studies of human cellular and tissue-based products (HCT/Ps) for transplantation therapy of type 1 diabetes mellitus (T1DM) necessarily involve animal models, particularly mouse models of diabetes induced by streptozotocin (STZ). These models should mimic the clinical and metabolic manifestations of T1DM in humans (face validity) and be similar to T1DM in terms of the pathogenetic mechanism (construct validity). Furthermore, since HCT/Ps contain human cells, modeling of diabetes in immune-deficient animals is obligatory.
View Article and Find Full Text PDFThe global prevalence of diabetes mellitus and its severe complications is on the rise. The study of the pathogenesis of the onset and the progression of complications related to the disease, as well as the search for new therapeutic agents and methods of treatment, remains relevant. Experimental models are extremely important in the study of diabetes.
View Article and Find Full Text PDFDiabetes affects over 350 million people worldwide, with the figure projected to rise to nearly 500 million over the next 20 years, according to the World Health Organization. Insulin-dependent diabetes mellitus (type 1 diabetes) is an endocrine disorder caused by an autoimmune reaction that destroys insulin-producing β-cells in the pancreas, which leads to insulin deficiency. Administration of exogenous insulin remains at the moment the treatment mainstay.
View Article and Find Full Text PDF