Publications by authors named "I S Donnison"

Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023-27) objectives provided they are carefully integrated into farming systems and landscapes.

View Article and Find Full Text PDF

New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass.

View Article and Find Full Text PDF

Growing Miscanthus species and hybrids has received strong scientific and commercial support, with the majority of the carbon (C) modelling predictions having focused on the high-yield, sterile and noninvasive hybrid Miscanthus × giganteus. However, the potential of other species with contrasting phenotypic and physiological traits has been seldom explored. To better understand the mechanisms underlying C allocation dynamics in these bioenergy crops, we pulse-labelled (CO) intact plant-soil systems of Miscanthus × giganteus (GIG), Miscanthus sinensis (SIN) and Miscanthus lutarioriparius (LUT) and regularly analysed soil respiration, leaves, stems, rhizomes, roots and soils for up to 190 days until leaf senescence.

View Article and Find Full Text PDF

To achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new cultivars for electricity generation via thermal power station furnaces.

View Article and Find Full Text PDF

Background And Aims: Wheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation?

Methods: For age- and dose-response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig.

View Article and Find Full Text PDF