Publications by authors named "I Rulifson"

Article Synopsis
  • Small interfering RNAs (siRNAs) have the potential to target and silence difficult disease-related genes, providing new ways to treat diseases.* -
  • While delivering siRNAs to the liver via N-acetylgalactosamine (GalNAc) has proven effective, delivering siRNAs to other cell types remains a challenge.* -
  • Research shows that certain cellular mechanisms, including retrograde transport and lipid droplets, can enhance the effectiveness of siRNA delivery and gene silencing in both liver and non-liver cell types.*
View Article and Find Full Text PDF

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene , encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene , encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD to date. Despite its discovery twenty years ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear.

View Article and Find Full Text PDF

Nonalcoholic fatty liver (NAFL) and its sequelae are growing health problems. We performed a genome-wide association study of NAFL, cirrhosis and hepatocellular carcinoma, and integrated the findings with expression and proteomic data. For NAFL, we utilized 9,491 clinical cases and proton density fat fraction extracted from 36,116 liver magnetic resonance images.

View Article and Find Full Text PDF

Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of , which encodes corticosteroid-binding globulin (CBG).

View Article and Find Full Text PDF