Human erythropoietin (hEpo) production requires mammalian cells able to make complex post-translational modifications to guaranty its biological activity. As mammalian cell can be reservoir of pathogenic viruses and several animal origin components are usually used in the cultivation of mammalian cells, hEpo contamination with viruses is something of great concern. As consequence, this study investigated the viral removal and inactivation capacity of a recombinant-hEpo (rec-hEpo) purification process.
View Article and Find Full Text PDFBackground: HIV-1 subtype B is largely predominant in the Caribbean, although other subtypes have been recently identified in Cuba.
Objectives: To examine HIV-1 genetic diversity in Cuba.
Methods: The study enrolled 105 HIV-1-infected individuals, 93 of whom had acquired the infection in Cuba.
The virus removal of protein A affinity chromatography, inactivation capacity, acid pH and a combination of high temperature with a chaotropic agent was determined in this work. The model viruses studied were sendaivirus, human immunodeficency virus (HIV-IIIb), human poliovirus type-II, human herpesvirus I and canine parvovirus. The protein A affinity chromatography showed a maximum reduction factor of 8 logs in the case of viruses larger than 120 nm size, while for small viruses (18-30 nm) the maximum reduction factor was about 5 logs.
View Article and Find Full Text PDF