Publications by authors named "I Rivera-Arconada"

Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques.

View Article and Find Full Text PDF

Spinal interneurons located in the dorsal horn induce primary afferent depolarization (PAD) controlling the excitability of the afferent's terminals. Following inflammation, PAD may reach firing threshold contributing to maintain inflammation and pain. Our aim was to study the collective behavior of dorsal horn neurons, its relation to backfiring of primary afferents and the effects of a peripheral inflammation in this system.

View Article and Find Full Text PDF

Background: Axo-axonic contacts onto central terminals of primary afferents modulate sensory inputs to the spinal cord. These contacts produce primary afferent depolarization (PAD), which serves as a mechanism for presynaptic inhibition, and also produce dorsal root reflexes (DRRs), which may regulate the excitability of peripheral terminals and second order neurons. We aimed to identify changes in these responses as a consequence of peripheral inflammation.

View Article and Find Full Text PDF

NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs enzymes, which confers them anti-inflammatory and analgesic properties. Diclofenac is a NSAID with preferred activity on COX-2 isozymes, but additionally, other targets may be implicated in its analgesic activity.

View Article and Find Full Text PDF

Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) commonly used to treat pain conditions in humans. In addition to its blocking activity on cyclooxygenase (COX) enzymes, several other targets could contribute to its analgesic activity. Here we explore the spinal antinociceptive actions of celecoxib and the potential implication of K7 channels in mediating its effects.

View Article and Find Full Text PDF