Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.
View Article and Find Full Text PDFBackground: In humans, the presence of an even distribution of melanocytes within the epidermal basal layer allows for uniform pigmentation in healthy and young individuals. Moreover, despite high variability in skin colours and tones, interindividual melanocyte density variability is low. However, dogs display a high intraindividual pigmentary variability in different anatomical areas.
View Article and Find Full Text PDFBacteria-mediated treatments gained increasing attention as alternative therapies against tumors. An attenuated mutant strain of Salmonella enterica serovar Typhimurium (STMΔznuABC) has recently been considered as a potential new anti-cancer strategy. However, it is unclear whether this activity is tumor-induced or species-specific, and no data are available regarding STMΔznuABC on canine mammary tumors (CMTs).
View Article and Find Full Text PDFMTs are prevalent in dogs, representing the most frequent oral malignancy, compared to cats, in which ocular melanomas predominate. This study investigates the canine and feline MT epidemiology (2005-2024) of cases submitted to the Veterinary Pathology Service (University of Perugia). Among the canine neoplasms, 845 (4%) were melanocytic: 329 (39%) melanocytomas; 512 (61%) melanomas.
View Article and Find Full Text PDFCutaneous hypersensitivity reactions (CHRs) are complex inflammatory skin disorders that affect humans and dogs. This study examined the inflammatory and immune responses leading to skin damage, inflammation, and irritation by investigating gene expression through quantitative PCR (qPCR) and protein localization through the immunohistochemistry (IHC) of specific receptors and molecules involved in CHRs. Formalin-fixed paraffin-embedded (FFPE) samples from canine CHR skin (n = 20) and healthy dog skin (n = 3) were analyzed for expression levels of eight genes, including members of the pattern recognition receptor (PRR) family, CD209 and CLEC4G, the Regakine-1-like chemokine, and acute phase proteins (APPs), LBP-like and Hp-like genes.
View Article and Find Full Text PDF