The past decade has seen remarkable progress in identifying genes that, when impacted by deleterious coding variation, confer high risk for autism spectrum disorder (ASD), intellectual disability, and other developmental disorders. However, most underlying gene discovery efforts have focused on individuals of European ancestry, limiting insights into genetic risks across diverse populations. To help address this, the Genomics of Autism in Latin American Ancestries Consortium (GALA) was formed, presenting here the largest sequencing study of ASD in Latin American individuals (n>15,000).
View Article and Find Full Text PDFAcute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context.
View Article and Find Full Text PDFThe inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known.
View Article and Find Full Text PDFChildren on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls.
View Article and Find Full Text PDFThe inner ear is the hub where hair cells transduce sound, gravity, and head acceleration stimuli carried by neural codes to the brain. Of all the senses, hearing and balance, which rely on mechanosensation, are the fastest sensory signals transmitted to the central nervous system. The mechanoelectrical transducer (MET) channel in hair cells is the entryway for the sound-balance-brain interface, but the channel's composition has eluded biologists due to its complexity.
View Article and Find Full Text PDF