Publications by authors named "I Perrotta"

Emerging zoonoses pose significant public health risks and necessitate rapid and effective treatment responses. This study enhances the technology for preparing Molecularly Imprinted Polymers (MIPs), which function as synthetic nanoparticles targeting SARS-CoV-2 receptor-binding domain (RBD), specifically the Omicron variant, thereby inhibiting its function. This study builds on previous findings by introducing precise adjustments in the formulation and process conditions to enhance particle stability and ensure better control over size and distribution, thereby overcoming the issues identified in earlier research.

View Article and Find Full Text PDF

Cell death is an important process that supports morphogenesis during development and tissue homeostasis during adult life by removing damaged or unwanted cells and its dysregulation is associated with numerous disease states. There are different pathways through which a cell can undergo cell death, each relying on peculiar molecular mechanisms and morpho-ultrastructural features. To date, however, while molecular and genetic approaches have been successfully integrated into the field, cell death studies rarely incorporate ultrastructural data from electron microscopy.

View Article and Find Full Text PDF

Repressing BET proteins' function using bromodomain inhibitors (BETi) has been shown to elicit antitumor effects by regulating the transcription of genes downstream of BRD4. We previously showed that BETi promoted cell death of triple-negative breast cancer (TNBC) cells. Here, we proved that BETi induce altered mitochondrial dynamics fitness in TNBC cells falling in cell death.

View Article and Find Full Text PDF
Article Synopsis
  • A smart temperature-responsive drug release system was created to enhance the effectiveness of tetracycline (TC) in treating bacterial infections.
  • The system uses niosomes made with SPAN60, cholesterol, and a phase change material (PCM), showing stable size and biocompatibility over three months.
  • The research revealed that the niosomes released more tetracycline at higher temperatures, which improved their antibacterial effects against certain bacteria while reducing the need for higher antibiotic doses.
View Article and Find Full Text PDF

Anderson-Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could drive tissue damage, including endoplasmic reticulum (ER) stress and its related signaling pathway's activation. We identified a new missense variant in the signal peptide of gene, c.

View Article and Find Full Text PDF