Publications by authors named "I Pastan"

Mesothelin (MSLN) is a cell-surface protein that is expressed in many cancers, which makes it a popular target for Ab-based cancer therapy. However, MSLN is shed from cancer cells at high levels via proteases that cleave at its membrane-proximal C-terminal region. Shed MSLN accumulates in patients' fluids and tumors and can block Ab-based MSLN-targeting drugs from killing cancer cells.

View Article and Find Full Text PDF

Background: LMB-100 is a mesothelin (MSLN)-targeting recombinant immunotoxin (iTox) carrying a Pseudomonas exotoxin A payload that has shown promise against solid tumors, however, efficacy is limited by the development of neutralizing anti-drug antibodies (ADAs). Tofacitinib is an oral Janus Kinase (JAK) inhibitor that prevented ADA formation against iTox in preclinical studies.

Methods: A phase 1 trial testing LMB-100 and tofacitinib in patients with MSLN-expressing cancers (pancreatic adenocarcinoma, n=13; cholangiocarcinoma, n=1; appendiceal carcinoma, n=1; cystadenocarcinoma, n=1) was performed to assess safety and to determine if tofacitinib impacted ADA formation.

View Article and Find Full Text PDF

Mesothelin (MSLN) is a cell-surface protein that is expressed on many cancers, which makes it a popular target for antibody-based cancer therapy. However, MSLN is shed from cancer cells at high levels via proteases that cleave at its membrane-proximal C-terminal region. Shed MSLN accumulates in patient fluids and tumors and can block antibody-based MSLN-targeting drugs from killing cancer cells.

View Article and Find Full Text PDF

Despite many clinical trials, CAR-T cells are not yet approved for human solid tumor therapy. One popular target is mesothelin (MSLN) which is highly expressed on the surface of about 30% of cancers including mesothelioma and cancers of the ovary, pancreas, and lung. MSLN is shed by proteases that cleave near the C terminus, leaving a short peptide attached to the cell.

View Article and Find Full Text PDF

Unlabelled: The tumor-associated antigen mesothelin is expressed at high levels on the cell surface of many human cancers, while its expression in normal tissues is limited. The binding of mesothelin to the tumor-associated cancer antigen 125 (CA-125) can lead to heterotypic cell adhesion and tumor metastasis within the pleural and peritoneal cavities. Immunotherapeutic strategies targeting mesothelin are being intensively investigated.

View Article and Find Full Text PDF