Publications by authors named "I Pajeva"

Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone () or sulfonyl hydrazone () fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds ( and ) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) and Multiple sclerosis (MS) lead to neurodegenerative processes negatively affecting millions of people worldwide. Their treatment is still difficult and practically incomplete. One of the most commonly used drugs against these neurodegenerative diseases is 4-aminopyridine.

View Article and Find Full Text PDF

The conventional treatment of neurodegenerative diseases (NDDs) is based on the "one molecule-one target" paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as "multi-target-directed ligands" (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development.

View Article and Find Full Text PDF

The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from spp., as similar to gatifloxacin, a synthetic antibacterial agent.

View Article and Find Full Text PDF

Quantitative structure-activity relationships (QSAR) are a widely used methodology allowing not only a better understanding of the mechanisms of chemical reactions, including radical scavenging, but also to predict the relevant properties of chemical compounds without their synthesis, isolation and experimental testing. Unlike the QSAR modeling of the kinetic antioxidant assays, modeling of the assays with stoichiometric endpoints depends strongly on the number of hydroxyl groups in the antioxidant molecule, as well as on some integral molecular descriptors characterizing the proportion of OH-groups able to enter and complete the radical scavenging reaction. In this work, we tested the feasibility of a "hybrid" classification/regression approach, consisting of explicit classification of individual OH-groups as involved in radical scavenging reactions, and using further the number of these OH-groups as a descriptor in simple-regression QSAR models of antiradical capacity assays with stoichiometric endpoints.

View Article and Find Full Text PDF