Publications by authors named "I Oya"

The emergence of the chiral-induced spin-selectivity (CISS) effect offers a new avenue for chiral organic molecules to autonomously manipulate spin configurations, thereby opening up possibilities in spintronics and spin-dependent electrochemical applications. Despite extensive exploration of various chiral systems as spin filters, one often encounters challenges in achieving simultaneously high conductivity and high spin polarization (SP). In this study, a promising chiral van der Waals superlattice, specifically the chiral TiS crystal, is synthesized via electrochemical intercalation of chiral molecules into a metallic TiS single crystal.

View Article and Find Full Text PDF

Both the spindle microtubule-organizing centers and the nuclear pore complexes (NPCs) are convoluted structures where many signaling pathways converge to coordinate key events during cell division. Interestingly, despite their distinct molecular conformation and overall functions, these structures share common components and collaborate in the regulation of essential processes. We have established a new link between microtubule-organizing centers and nuclear pores in budding yeast by unveiling an interaction between the Bfa1/Bub2 complex, a mitotic exit inhibitor that localizes on the spindle pole bodies, and the Nup159 nucleoporin.

View Article and Find Full Text PDF

Understanding which intracellular signaling pathways are activated by manganese stress is crucial to decipher how metal overload compromise cellular integrity. Here, we unveil a role for oxidative and cell wall stress signaling in the response to manganese stress in yeast. We find that the oxidative stress transcription factor Yap1 protects cells against manganese toxicity.

View Article and Find Full Text PDF

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed.

View Article and Find Full Text PDF

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background.

View Article and Find Full Text PDF