Publications by authors named "I Nihonmatsu"

Late-phase long-term potentiation (L-LTP) in hippocampus, thought to be the cellular basis of long-term memory, requires new protein synthesis. Neural activity enhances local protein synthesis in dendrites, which in turn mediates long-lasting synaptic plasticity. Ca/calmodulin-dependent protein kinase IIα (CaMKIIα) is a locally synthesized protein crucial for this plasticity, as L-LTP is impaired when its local synthesis is eliminated.

View Article and Find Full Text PDF

Late phase long-term potentiation (L-LTP) in the hippocampus is believed to be the cellular basis of long-term memory. Protein synthesis is required for persistent forms of synaptic plasticity, including L-LTP. Neural activity is thought to enhance local protein synthesis in dendrites, and one of the mechanisms required to induce or maintain the long-lasting synaptic plasticity is protein translation in the dendrites.

View Article and Find Full Text PDF

In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration.

View Article and Find Full Text PDF

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser(187) of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system.

View Article and Find Full Text PDF

The distribution of neurons that are immunoreactive to latexin, which is an endogenous inhibitor of the A/B subfamily of metallocarboxypeptidases, was investigated in the adult cat telencephalon. Latexin-immunoreactive neurons were distributed in the lower layers of the neocortex and adjacent ventral mesocortex, as well as in the claustrum/endopiriform formation. There were marked regional and laminar differences in density and distribution of latexin-immunoreactive neurons in the cerebral cortex.

View Article and Find Full Text PDF