Publications by authors named "I Nauhaus"

Spatial transitions in color can aid any visual perception task, and its neural representation, the "integration of color and form," is thought to begin at primary visual cortex (V1). Integration of color and form is untested in mouse V1, yet studies show that the ventral retina provides the necessary substrate from green-sensitive rods and ultraviolet-sensitive cones. Here, we used two-photon imaging in V1 to measure spatial frequency (SF) tuning along four axes of rod and cone contrast space, including luminance and color.

View Article and Find Full Text PDF

Many sensory-driven behaviors rely on predictions about future states of the environment. Visual input typically evolves along complex temporal trajectories that are difficult to extrapolate. We test the hypothesis that spatial processing mechanisms in the early visual system facilitate prediction by constructing neural representations that follow straighter temporal trajectories.

View Article and Find Full Text PDF

Visual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations requires experimental control of retinal adaptation to infer its spatio-temporal-chromatic output. Here, we measure the balance of input to mouse V1, in the anesthetized setup, from the three main photoreceptor opsins-M-opsin, S-opsin, and rhodopsin-as a function of two stimulus dimensions.

View Article and Find Full Text PDF

Receptive field (RF) size and preferred spatial frequency (SF) vary greatly across the primary visual cortex (V1), increasing in a scale invariant fashion with eccentricity. Recent studies reveal that preferred SF also forms a fine-scale periodic map. A fundamental open question is how local variability in preferred SF is tied to the overall spatial RF.

View Article and Find Full Text PDF