J Photochem Photobiol B
February 2018
The objective of this work was to ascertain the nature of the components responsible for the reducing and stabilizing properties of Zostera noltii extracts that lead to gold nanoparticle formation using chemical techniques of analysis. In order to achieve this aim, we try the synthesis of AuNPs with three different extracts from plants collected in the Bay of Cádiz (Spain). The n-butanol extract produced the best results.
View Article and Find Full Text PDFBioelectrochemistry
February 2015
New biosensors based on inhibition for the detection of cyanide and the comparison of the analytical performances of nine enzyme biosensor designs by using three different electrodes: Sonogel-Carbon, glassy carbon and gold electrodes were discussed. Three different horseradish peroxidase immobilization procedures with and without gold sononanoparticles were studied. The amperometric measurements were performed at an applied potential of -0.
View Article and Find Full Text PDFA rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions.
View Article and Find Full Text PDFSensors (Basel)
April 2013
The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.
View Article and Find Full Text PDFGraphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility.
View Article and Find Full Text PDF