Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.
View Article and Find Full Text PDFBackground: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma.
Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas ( = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings.
Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA.
View Article and Find Full Text PDF