It has been reported that transected spinal cord shows signs of axonal regeneration after peripheral nerve (PN) graft. We studied the membrane excitability and ion distribution in axons from transected rat spinal cord 3 weeks after PN graft using the spinal cord evoked potential, electron probe X-ray microanalysis, and the patch-clamp technique. Axonal structures were also observed using conventional electron microscopy.
View Article and Find Full Text PDFAim: We elucidated the mitochondrial functions of brown adipocytes in intracellular signalling, paying attention to mitochondrial activity and noradrenaline- and forskolin-induced Ca(2+) mobilizations in cold-acclimated rats.
Methods: A confocal laser-scanning microscope of brown adipocytes from warm- or cold-acclimated rats was employed using probes rhodamine 123 which is a mitochondria-specific cationic dye, and the cytoplasmic and mitochondrial Ca(2+) probes fluo-3 and rhod-2. X-ray microanalysis was also studied.
We performed peripheral nerve allografting in rats with spinal cord injury, and measured motor function and axonal membrane potential as well as Ca(2+) concentration of the nerve grafting spinal cord area by using a behavior observation system and a confocal laser-scanning microscope, respectively. In our experiments, we produced a model of peripheral nerve grafting after spinal cord injury by peripheral nerve allografting (sciatic nerve) in rats with spinal cord injury (thoracic cord hemisection). The group with spinal cord injury that underwent peripheral nerve grafting showed improvement in motor function, a significant increase in the axonal action potential, and a slight increase in the Ca(2+) concentration compared with the group that did not undergo nerve grafting.
View Article and Find Full Text PDFWe investigated intracellular Ca(2+) ([Ca(2+)](i)) oscillations evoked by glucagon-like peptide 1 (GLP-1) in relation to the ryanodine receptor (RyR) and Ca(2+)-induced Ca(2+)release (CICR) mechanism in pancreatic B cell HIT. GLP-1 produced [Ca(2+)](i) oscillations in the cells, both in media with and without Ca(2+), an effect inhibited by ruthenium red and mimicked by 8-Br-cAMPS. In addition, the GLP-1-evoked [Ca(2+)](i) rise was initiated at the local intercellular peripheral cytoplasm, and a resultant expansion of the intercellular space was also observed.
View Article and Find Full Text PDFBrown adipose tissue plays the dominant role in response to cold acclimatization through its capacity to produce heat. To demonstrate the cellular function for thermogenesis induced by cold acclimation in the brown adipose tissue of obese Zucker rats, we examined the changes for the area as well as the Na, K, Cl, and Ca concentrations in the mitochondria of brown adipocytes after the warm (25 degrees C, WG) and the cold acclimations (10 degrees C, CG). Moreover, the respiratory quotients (RQs) of these rats were measured.
View Article and Find Full Text PDF