Rev Sci Instrum
November 2024
Designs for two automated atomic layer deposition (ALD) flow reactors are presented, and their capabilities for coating additively manufactured (AM) metal prints are described. One instrument allows the coating of several AM parts in batches, while the other is useful for single part experiments. To demonstrate reactor capabilities, alumina (Al2O3) was deposited onto AM 316L stainless steel by dosing with water (H2O) vapor and trimethylaluminum (TMA) and purging with nitrogen gas (N2).
View Article and Find Full Text PDFTo fully exploit ultra-short X-ray pulse durations routinely available at X-ray free-electron lasers to follow out-of-equilibrium dynamics, inherent arrival time fluctuations of the X-ray pulse with an external perturbing laser pulse need to be measured. In this work, two methods of arrival time measurement were compared to measure the arrival time jitter of hard X-ray pulses. The methods were photoelectron streaking by a THz field and a transient refractive index change of a semiconductor.
View Article and Find Full Text PDFChemical solution deposition (CSD) methods involving the thermal decomposition of 5.0 M Er(NO)·5HO and Y(NO)·6HO precursor solutions were employed to fabricate protective erbia and yttria coatings onto stainless steel (SS304/SS316) coupons. The two techniques tested were dip and spray coating, which were then compared to a commercial yttria spray (ZYP Coatings).
View Article and Find Full Text PDFOne of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable TiO nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time.
View Article and Find Full Text PDFLong-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly.
View Article and Find Full Text PDF