Publications by authors named "I N Sizova"

Oriented movement (phototaxis) is an efficient way to optimize light-driven processes and to avoid photodamage for motile algae. In Chlamydomonas the receptors for phototaxis are the channelrhodopsins ChR1 and ChR2. Both are directly light-gated, plasma membrane-localized cation channels.

View Article and Find Full Text PDF

Translocation of channelrhodopsins (ChRs) is mediated by the intraflagellar transport (IFT) machinery. However, the functional role of the network involving photoreceptors, IFT and other proteins in controlling algal ciliary motility is still not fully delineated. In the current study, we have identified two important motifs at the C-terminus of ChR1, VXPX and LKNE.

View Article and Find Full Text PDF

With the establishment of the CRISPR-Cas9 molecular tool as a DNA editing system in 2012, the handling of gene editing experiments was strongly facilitated pushing reverse genetics approaches forward in many organisms. These new gene editing technologies also drastically increased the possibilities for design-driven synthetic biology. Here, we describe a protocol for gene editing in the green algae Chlamydomonas reinhardtii using preassembled CRISPR-Cas9 ribonucleoproteins.

View Article and Find Full Text PDF

Flat-top laser beams produced with apodizers comprising a circular serrated aperture and spatial filter are not optimal for propagation over long distances. Residual intensity fluctuations across the overall smooth profile at the apodizer exit significantly accelerate degradation of the beam at small Fresnel numbers. By solving the parabolic equation for uniform and Gaussian beams propagating through a serrated aperture apodizer, we show that a narrow opaque ring installed inside the serrated aperture can largely suppress unwanted diffraction effects and bring the output amplitude profile close to the flattened Gaussian function.

View Article and Find Full Text PDF

The use of CRISPR/Cas endonucleases has revolutionized gene editing techniques for research on Chlamydomonas reinhardtii. To better utilize the CRISPR/Cas system, it is essential to develop a more comprehensive understanding of the DNA repair pathways involved in genome editing. In this study, we have analyzed contributions from canonical KU80/KU70-dependent nonhomologous end-joining (cNHEJ) and DNA polymerase theta (POLQ)-mediated end joining on SpCas9-mediated untemplated mutagenesis and homology-directed repair (HDR)/gene inactivation in Chlamydomonas.

View Article and Find Full Text PDF