Publications by authors named "I N Shilova"

Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria and , the intercellular membrane nanotubes.

View Article and Find Full Text PDF

Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus.

View Article and Find Full Text PDF

The marine diazotroph Crocosphaera watsonii provides fixed carbon (C) and nitrogen (N) to open-ocean regimes, where nutrient deficiency controls productivity. The growth of Crocosphaera can be limited by low phosphorus (P) concentrations in these oligotrophic environments. Biomarkers such as the high-affinity ABC transporter phosphate-binding gene, pstS, are commonly used to monitor when such organisms are under P stress; however, transcriptional regulation of these markers is often complex and not well-understood.

View Article and Find Full Text PDF

Symbiosis between a marine alga and a N-fixing cyanobacterium ( UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to N-fixing cyanobacteria use different strategies to avoid inhibition of N fixation by the oxygen evolved in photosynthesis.

View Article and Find Full Text PDF

Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which are supplied, in part, by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities.

View Article and Find Full Text PDF