Publications by authors named "I N Rich"

Optical sensing is an important research field due to its proven ability to be extremely sensitive, nondestructive, and applicable to sensing a wide range of chemical, thermal, electric, or magnetic phenomena. Beyond traditional optical sensors that often rely on bulky setups, plasmonic nanostructures can offer many advantages based on their sensitivity, compact form, cost-effectiveness, multiplexing compatibility, and compatibility with many standard semiconductor nanofabrication techniques. In particular, plasmon-enhanced optical transmission through arrays of nanostructured holes has led to the development of a new generation of optical sensors.

View Article and Find Full Text PDF

Introduction: The objective of this study was to describe tobacco and nicotine product use state transition probabilities among youth and young adults over time.

Methods: A national sample of young adult tobacco product users and nonusers between the ages of 18 and 34 years at baseline was surveyed at 6-month intervals for 3 years. Use and nonuse states were defined as mutually exclusive categories based on self-reported, past 30-day use of the various products.

View Article and Find Full Text PDF

Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum.

View Article and Find Full Text PDF

Unlabelled: This article critically reviews current methods to test and characterize umbilical cord blood (UCB) for hematopoietic stem cell transplantation. These tests include total nucleated cell (TNC) count, viability, viable CD34-positive content, and the colony-forming unit assay. It is assumed that the data obtained are sufficient to perform a UCB stem cell transplant without actually determining the quality and potency of the stem cells responsible for engraftment.

View Article and Find Full Text PDF

Background: Rare hematopoietic stem cell populations are responsible for the transplantation engraftment process. Umbilical cord blood (UCB) is usually processed to the total nucleated cell (TNC), but not to the mononuclear cell (MNC) fraction. TNC counts are used to determine UCB unit storage, release for transplantation and correlation with time to engraftment.

View Article and Find Full Text PDF