Pseudocyclic arylbenziodoxaboroles are unique aryne precursors under neutral aqueous conditions that selectively react with organic sulfides, forming the corresponding sulfonium salts. This reaction is compatible with various substituents (alkyl, halogen, CN, NO, CHO, and cyclopropyl) in the aromatic ring or alkyl group of the sulfide. Similar reactions of sulfoxides afford -hydroxy-substituted sulfonium salts.
View Article and Find Full Text PDFVarious five-membered cyclic dibenzobromolium salts (dibenzo[,]bromol-5-ium chloride, nitrate, hydrogen sulfate, dihydrogen phosphate, trifluoroacetate, and tetrafluoroborate) were prepared by diazotization-cyclization of 2'-bromo-[1,1'-biphenyl]-2-amine in solution of appropriate acids. The chlorolium analogues (iodide, trifluoroacetate, and tetrafluoroborate) were obtained by a similar procedure. Additional dibenzohalolium derivatives (dibenzo[,]bromol-5-ium and dibenzo[,]chlorol-5-ium azides, bis(trifluoromethanesulfonyl)imidates, thiocyanates, and trifluoromethanesulfonates) were prepared by anion exchange.
View Article and Find Full Text PDFBackground: In conditions of industrial animal husbandry, it is necessary to pay attention to the immune system, which regulates metabolic processes in the body of animals. To do this, additives with adaptive properties attract attention.
Aim: The aim is to define a way to increase productivity using adaptogens of plant and animal origin in feeding cattle.
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis.
View Article and Find Full Text PDF