In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2014
The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2012
Development of new ways of creating catalytic antibodies possessing defined substrate specificity towards artificial substrates has important fundamental and practical aspects. Low immunogenicity combined with high stability of immunoglobulins in the blood stream makes abzymes potent remedies. A good example is the cocaine-hydrolyzing antibody that has successfully passed clinical trials.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct.
View Article and Find Full Text PDFExpression of recombinant antibodies in mammalian cells is one of key problems in immunobiotechnology. Alternatively, expression of a broad panel of antibodies and of their fragments may be effectively done in yeast cells. We obtained expression strains of the methylotrophic beast Pichia pastoris producing single chain human catalytic antibody A17 (A.
View Article and Find Full Text PDF