Publications by authors named "I N Gazizov"

Article Synopsis
  • The spiny mouse exhibits the ability to heal wounds without scarring, which may be linked to unique features of its blood and clotting mechanisms.
  • Compared to Balb/c mice, spiny mice showed stronger blood clots, faster tail bleeding times, and higher levels of clottable fibrinogen, indicating superior hemostatic capabilities.
  • Histological analysis revealed that spiny mouse clots were densely packed with fibrin and had better plasma clot stiffness, suggesting that these characteristics could enhance their wound healing and regenerative abilities.
View Article and Find Full Text PDF

Background: The biosafety of gene therapy products remains a major challenge to their introduction into the clinic. In particular, the problem of immunogenicity of viral vectors is the focus of attention. Large animals such as pigs, whose anatomical and physiological characteristics are similar to those of humans, have an advantage in testing vector systems.

View Article and Find Full Text PDF

The greater muscle fiber cross-sectional area (CSA) is associated with greater skeletal muscle mass and strength, whereas muscle fiber atrophy is considered a major feature of sarcopenia. Muscle fiber size is a polygenic trait influenced by both environmental and genetic factors. However, the genetic variants underlying inter-individual differences in muscle fiber size remain largely unknown.

View Article and Find Full Text PDF

The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP).

View Article and Find Full Text PDF

Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis.

View Article and Find Full Text PDF