Publications by authors named "I N Bondarev"

Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN).

View Article and Find Full Text PDF

We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case, we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as contrary to the ∼1/ dependence of that of the local Lifshitz force. In the latter case, we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness.

View Article and Find Full Text PDF

Using transdimensional plasmonic materials (TDPM) within the framework of fluctuational electrodynamics, we demonstrate nonlocality in dielectric response alters near-field heat transfer at gap sizes on the order of hundreds of nanometers. Our theoretical study reveals that, opposite to the local model prediction, propagating waves can transport energy through the TDPM. However, energy transport by polaritons at shorter separations is reduced due to the metallic response of TDPM stronger than that predicted by the local model.

View Article and Find Full Text PDF

MnGe epitaxial thin films previously grown mainly on Ge substrate have been synthesized on Si(111) using the co-deposition of Mn and Ge at a temperature of 390 °C. RMS roughness decreases by almost a factor of two in the transition from a completely polycrystalline to a highly ordered growth mode. This mode has been stabilized by changing the ratio of the Mn and Ge evaporation rate from the stoichiometric in the buffer layer.

View Article and Find Full Text PDF

Plasmonic transdimensional materials (TDMs), which are atomically thin metals of precisely controlled thickness, are expected to exhibit large tailorability and dynamic tunability of their optical response as well as strong light confinement and nonlocal effects. Using spectroscopic ellipsometry, we characterize the complex permittivity of ultrathin films of passivated plasmonic titanium nitride with thicknesses ranging from 1 to 10 nm. By measuring passivated TiN, we experimentally distinguish between the contributions of an oxide layer and thickness to the optical properties.

View Article and Find Full Text PDF