Publications by authors named "I N Akpinar"

Objective: The study aims to evaluate the stress distribution on tooth and restoration of zirconia endocrowns with pulp chamber or intracanal extension and zirconia post performed maxillary first molar using finite element analysis.

Method And Materials: Three three-dimensional endodontically treated maxillary molars were modeled. Cortical bone and cementum were modeled 2 mm and 200 μm in thickness.

View Article and Find Full Text PDF

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution.

View Article and Find Full Text PDF

Organophosphorus chemicals, including chemical warfare agents (CWAs) and insecticides, are acutely toxic materials that warrant capture and degradation. Metal-organic frameworks (MOFs) have emerged as a class of tunable, porous, crystalline materials capable of hydrolytically cleaving, and thus detoxifying, several organophosphorus nerve agents and their simulants. One such MOF is M-MFU-4l (M = metal), a bioinspired azolate framework whose metal node is composed of a variety of divalent first-row transition metals.

View Article and Find Full Text PDF

Objectives: Many publicly funded health systems use a mix of privately and publicly operated providers of care to deliver elective surgical services. The aim of this systematic review was to assess the role of privately operated but publicly funded provision of surgical services for adult patients who had cataract or orthopedic surgery within publicly funded health systems in high-income countries.

Methods: Electronic databases (Ovid MEDLINE, OVID Embase, and EBSCO EconLit) were searched on 26 March 2021, and gray literature sources were searched on 6 April 2021.

View Article and Find Full Text PDF

Near-infrared (NIR) light is known to have outstanding optical penetration in biological tissues and to be non-invasive to cells compared with visible light. These characteristics make NIR-specific light optimal for numerous biological applications, such as the sensing of biomolecules or in theranostics. Over the years, significant progress has been achieved in the synthesis of fluorescent cyclophanes for sensing, bioimaging, and making optoelectronic materials.

View Article and Find Full Text PDF