Publications by authors named "I Moreno-Garrido"

Salinity has a strong influence on microorganisms distribution patterns and consequently on the relevance of photoheterotrophic metabolism, which since the discovery of proteorhodopsins is considered the main contributor to solar energy capture on the surface of the oceans. Solar salterns constitute an exceptional system for the simultaneous study of several salt concentrations, ranging from seawater, the most abundant environment on Earth, to saturated brine, one of the most extreme, which has been scarcely studied. In this study, pigment composition across the salinity gradient has been analyzed by spectrophotometry and RP-HPLC, and the influence of salinity on microbial diversity of the three domains of life has been evaluated by a metataxonomic study targeting hypervariable regions of 16S and 18S rRNA genes.

View Article and Find Full Text PDF

Silver (Ag) and cadmium (Cd) are non-essential metals that, as a result of natural processes and human activities, reach the aquatic environment where they interact with biota inducing potential toxic effects. To determine the biological effects of these metals on the endobenthic bivalve Scrobicularia plana, specimens were exposed to Ag and Cd at two concentrations, 5 and 50 μg∙L, for 7 days in a controlled microcosm system. The levels of the metals were measured in the seawater, sediments and clam tissues.

View Article and Find Full Text PDF

Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms.

View Article and Find Full Text PDF

Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals.

View Article and Find Full Text PDF

Metals such as copper (Cu) enter marine environments from natural and anthropogenic sources, causing changes in the biodiversity of marine microalgae and cyanobacteria. Cu plays a dual role as either a micronutrient or toxicant depending on the environmental concentration. Many studies have summarized the potential of Cu to become more toxic to microalgae under environmental stress (for instance climate change).

View Article and Find Full Text PDF