Understanding the solid target dynamics resulting from the interaction with an ultrashort laser pulse is a challenging fundamental multi-physics problem involving atomic and solid-state physics, plasma physics, and laser physics. Knowledge of the initial interplay of the underlying processes is essential to many applications ranging from low-power laser regimes like laser-induced ablation to high-power laser regimes like laser-driven ion acceleration. Accessing the properties of the so-called pre-plasma formed as the laser pulse's rising edge ionizes the target is complicated from the theoretical and experimental point of view, and many aspects of this laser-induced transition from solid to overdense plasma over picosecond timescales are still open questions.
View Article and Find Full Text PDFWe report on the demonstration of a diode-pumped, Tm:YLF-based, chirped pulse amplification laser system operating at λ ≈ 1.9 µm that produces amplified pulse energies exceeding 1.5 J using a single 8-pass power amplifier.
View Article and Find Full Text PDFA mathematical model is proposed for Bordetella pertussis with the main goal to better understand and describe the relation between cell growth, oxidative stress and NADPH levels under different oxidative conditions. The model is validated with flask experiments conducted under different conditions of oxidative stress induced by high initial glutamate concentrations, low initial inoculum and secondary culturing following exposure to starvation. The model exhibited good accuracy when calibrated and validated for the different experimental conditions.
View Article and Find Full Text PDFWe report on the generation of high energy, high power pulses in a tabletop diode-pumped Tm:YLF-based laser system, which delivers amplified pulse energies up to 108 J, as well as GW peak power performance when seeded with nanosecond duration pulses. Furthermore, the high power and efficiency capabilities of operating Tm:YLF in the multi-pulse extraction (MPE) regime were explored by seeding the experimental setup with a multi-kHz burst of pulses exhibiting a low individual pulse fluence, resulting in a 3.6 kW average power train of multi-joule-level pulses with an optical-to-optical efficiency of 19%.
View Article and Find Full Text PDFWe discuss the impact of COVID-19, the journey towards developing vaccines against the disease, and how biomanufacturing should evolve in order to meet similar challenges in the future.
View Article and Find Full Text PDF