Publications by authors named "I Martinez-Monge"

The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

The ever-increasing demand for biopharmaceuticals has created the need for improving the overall productivity of culture processes. One such operational concept that is considered is fed-batch operations as opposed to batch operations. However, optimal fed-batch operations require complete knowledge of the cell culture to optimize the culture conditions and the nutrients feeding.

View Article and Find Full Text PDF

The increasing demand for biopharmaceuticals produced in mammalian cells has driven the industry to enhance the productivity of bioprocesses through intensification of culture process. Fed-batch and perfusion culturing strategies are considered the most attractive choices, but the application of these processes requires the availability of reliable online measuring systems for the estimation of cell density and metabolic activity. This manuscript reviews the methods (and the devices used) for monitoring of the oxygen consumption, also known as oxygen uptake rate (OUR), since it is a straightforward parameter to estimate viable cell density and the physiological state of cells.

View Article and Find Full Text PDF

At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase.

View Article and Find Full Text PDF

Although pH control at physiological levels is generally considered as the optimal culture condition, in some cases other strategies should be taken into account for their beneficial effects on process performance. pH and CO levels are chemical variables that have a major impact in cell growth and product titers in cell culture since their effect on key metabolic routes. HEK293 cells expressing recombinant hIFNγ showed different metabolic behavior when cultured in shake flask compared to pH-controlled bioreactors, in which a decrease in cell density and product titer were observed.

View Article and Find Full Text PDF