Publications by authors named "I Marten"

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown.

View Article and Find Full Text PDF

Helical indolo[2,3-]- and [3,2-]phenanthridines were synthesized from amines by amide formation and Morgan-Walls cyclization. The synthetic routes offer the advantage of late-stage derivatization and do not require protecting groups, which makes the compounds directly suitable for further functionalization. The compounds exhibit remarkable acid-dependent bathochromic shifts of the luminescence, solvatochromism, and aggregation-induced emission (AIE) behavior, which make them especially interesting candidates for studies toward optoelectronic applications.

View Article and Find Full Text PDF

To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca. In our search for species-dependent functional TPC1 channel variants with different luminal Ca sensitivity, we found in total three acidic residues present in Ca sensor sites 2 and 3 of the Ca-sensitive AtTPC1 channel from that were neutral in its ortholog and also in those of many other Fabaceae.

View Article and Find Full Text PDF

Plant transpiration is controlled by stomata, with S- and R-type anion channels playing key roles in guard cell action. Arabidopsis mutants lacking the ALMT12/QUAC1 R-type anion channel function in guard cells show only a partial reduction in R-type channel currents. The molecular nature of these remaining R-type anion currents is still unclear.

View Article and Find Full Text PDF

Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation.

View Article and Find Full Text PDF