Nucleic acid vaccines are designed based on genetic sequences (DNA or mRNA) of a target antigen to be expressed to drive a host immune response. In response to the COVID-19 pandemic, mRNA and DNA vaccines based on the SARS-CoV-2 Spike antigen were developed. Surprisingly, head-to-head characterizations of the immune responses elicited by each vaccine type has not been performed to date.
View Article and Find Full Text PDFMonoclonal antibody therapy has played an important role against SARS-CoV-2. Strategies to deliver functional, antibody-based therapeutics with improved in vivo durability are needed to supplement current efforts and reach underserved populations. Here, we compare recombinant mAbs COV2-2196 and COV2-2130, which compromise clinical cocktail Tixagevimab/Cilgavimab, with optimized nucleic acid-launched forms.
View Article and Find Full Text PDFThe enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines.
View Article and Find Full Text PDFLymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβCD8 T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβCD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1, that upon adoptive transfer protect from T cell-induced colitis.
View Article and Find Full Text PDF