Publications by authors named "I Manthey"

NMR spectroscopy provides structural and functional information about biomolecules and their complexes. The complexity of these systems can make the NMR data difficult to interpret, particularly for newer users of NMR technology, who may have limited understanding of the tools available and how they are used. To alleviate this problem, we have created software based on standardized workflows for both solution and solid-state NMR spectroscopy of proteins.

View Article and Find Full Text PDF

Farnesyltransferase (FTase) enables about 100 proteins to interact with cellular membranes by catalyzing the posttranslational addition of a farnesyl group. Farnesylated proteins provide important functions and inhibitors against the β-subunit of the heterodimer of FTase are intensively studied in clinical and preclinical trials. However, very little is known about the transcriptional regulation of the β-subunit.

View Article and Find Full Text PDF

Background: G protein-coupled receptor kinase 6 (GRK6) is part of the G protein-coupled receptor kinase family, whose members act as key regulators of seven-transmembrane receptor signalling. GRK6 seems to play a role in regulation of inflammatory processes, but mechanisms of transcriptional regulation of GRK6 expression in inflammatory cell lines have not been characterized. Protein kinase C (PKC) signalling is also involved in inflammatory regulation and an impact of PKC activation on GRK6 protein expression was described previously.

View Article and Find Full Text PDF

Farnesylation is an important post-translational protein modification in eukaryotes. Farnesylation is performed by protein farnesyltransferase, a heterodimer composed of an α- (FTα) and a β-subunit. Recently, homodimerization of truncated rat and yeast FTα has been detected, suggesting a new role for FTα homodimers in signal transduction.

View Article and Find Full Text PDF

Objectives: Coronary artery disease (CAD)-associated ischemic heart failure is characterized by dysregulated gene expression which is partly mediated by microRNAs (miRNAs). While the muscle-specific miR-1 and miR-133 are involved in cardiac development and hypertrophy, their role in heart failure resulting from CAD is unknown. We, therefore, tested the hypothesis that cardiac miR-1 and miR-133 expression is associated with signs of heart failure in patients undergoing coronary artery bypass grafting.

View Article and Find Full Text PDF