The NA62 experiment at CERN, configured in beam-dump mode, has searched for dark photon decays in flight to electron-positron pairs using a sample of 1.4×10^{17} protons on dump collected in 2021. No evidence for a dark photon signal is observed.
View Article and Find Full Text PDFPhys Rev Lett
September 2021
Searches for the lepton number violating K^{+}→π^{-}μ^{+}e^{+} decay and the lepton flavor violating K^{+}→π^{+}μ^{-}e^{+} and π^{0}→μ^{-}e^{+} decays are reported using data collected by the NA62 experiment at CERN in 2017-2018. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: B(K^{+}→π^{-}μ^{+}e^{+})<4.2×10^{-11}, B(K^{+}→π^{+}μ^{-}e^{+})<6.
View Article and Find Full Text PDFWith the alarming rise of antimicrobial resistance, studies on bacteria-surface interactions are both relevant and timely. Scanning electron microscopy and colony forming unit counting are commonly used techniques but require sophisticated sample preparation and long incubation time. Here, we present a direct method based on molecular dynamics simulation of nanostructured surfaces providing in silico predictions, complemented with time-lapse fluorescence imaging to study live interactions of bacteria at the membrane-substrate level.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2017
Background: The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks.
View Article and Find Full Text PDFActive surfaces are presently tailored to cause specific effects on living cells, which can be useful in many fields. Their development requires the understanding of the molecular mechanisms of interaction between lipid-enveloped entities and solid surfaces. Here, using coarse-grained molecular dynamics simulations, we have analyzed the different interaction modes of coated substrates with lipid vesicles that mimic biological envelopes.
View Article and Find Full Text PDF