Publications by authors named "I Maksimovic"

Abnormalities in distinct metabolic pathways have been associated with the pathogenesis and progression of many forms of kidney disease. Metabolomics analyses can be used to determine organ-specific metabolic fingerprints and, ideally, should represent the metabolic state of the organ at the exact moment the sample is harvested. However, conventional harvesting methods depend on posteuthanasia tissue harvest, which results in ischemia conditions and metabolome changes that could potentially introduce artifacts into the final studies.

View Article and Find Full Text PDF

Introduction: Plants respond to water stress with a variety of physiological and biochemical changes, but their response varies among species, varieties and cultivars. Waterlogging in tomato reduces plant growth, degrade chlorophyll and increase concentration of oxidative parameters. Priming can alleviate stress in plants caused by waterlogging enabling plants to be more tolerant to an additional stress in the current or even subsequent generation.

View Article and Find Full Text PDF

This paper presents the results of the research on the overall distribution of selenium (Se) in various aquatic compartments (water, sediment, plankton and macrophytes) at six selected sites of the Croatian part of the Drava and Danube rivers, the connected floodplain lake and the melioration channel system carried out in two sampling periods (flooding in June and the drought period in September). In addition, the physicochemical water properties, plankton composition and biomass were analysed. Our study revealed low mean Se contents in sediments and water, indicating Se deficiency in the studied freshwater systems.

View Article and Find Full Text PDF

Environmental pollution is an emerging global issue. Heterogenous photocatalytic degradation, which belongs to the advanced oxidation processes, is a promising sustainable technique for the removal of harmful pollutants (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF