J Biophotonics
November 2024
This study explored the effects of 1267 nm laser irradiation on changes in blood flow parameters and activation of the regulatory mechanisms of the microcirculatory bed (MCB). Using laser Doppler flowmetry (LDF) technique and time-frequency analysis of perfusion signals, changes in the MCB of 16 healthy volunteers, targeting the distal phalanx of the third finger with 1267 nm laser irradiation were evaluated. Results indicated no significant differences in perfusion between control and target measurements, likely due to blood flow redistribution caused by vessel dilation/constriction.
View Article and Find Full Text PDFThe work considers a theranostic system that implements a multimodal approach allowing the simultaneous generation of singlet oxygen and visualization of the various parameters of the vascular bed. The system, together with the developed data processing algorithm, has the ability to assess architectural changes in the vascular network and its blood supply, as well as to identify periodic signal changes associated with mechanisms of blood flow oscillation of various natures. The use of this system seems promising in studying the effect of laser-induced singlet oxygen on the state of the vascular bed, as well as within the framework of the theranostic concept of treatment and diagnosis of oncological diseases and non-oncological vascular anomalies.
View Article and Find Full Text PDFThis work investigates the influence of laser irradiation parameters (wavelength, power density and exposure time) on singlet oxygen (O) generation efficiency. Chemical trap (L-histidine) and fluorescent probe (Singlet Oxygen Sensor Green, SOSG) detection methods were used. Studies have been conducted for 1267, 1244, 1122 and 1064 nm laser wavelengths.
View Article and Find Full Text PDFThe introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests.
View Article and Find Full Text PDFTimely diagnostics of microcirculatory system abnormalities, which are the most severe diabetic complications, is one of the major problems facing modern health care. Functional abnormalities manifest themselves earlier than the structural ones, and therefore their assessment is the issue of primary importance. In this study Laser Doppler flowmetry, a noninvasive technique for the cutaneous blood flow monitoring, was utilized together with local temperature tests and wavelet analysis.
View Article and Find Full Text PDF