Proc Natl Acad Sci U S A
August 2022
Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions.
View Article and Find Full Text PDFCyclic adenosine monophosphate (cAMP) is a universal second messenger that mediates a myriad of cell functions across all kingdoms of life.The ability to monitor intracellular changes of cAMP concentration in living cells using FRET-based biosensors is proving to be of paramount importance to unraveling the sophisticated organization of cAMP signaling.Here we describe the deployment of the fruit fly Drosophila melanogaster, specifically the third instar larval stage, as an in vivo model to study the spatio-temporal dynamics of cAMP in neurons.
View Article and Find Full Text PDFHere we describe the stepwise application of bioluminescence resonance energy transfer (BRET)-based conformational receptor biosensors to study GPCR activation in intact cells. This technology can be easily adopted to various plate reader devices and microtiter plate formats. Due to the high sensitivity of these BRET-based receptor biosensors and their ability to quantify simultaneously receptor activation/de-activation kinetics as well as compound efficacy and potency, these optical tools provide the most direct and unbiased approach to monitor GPCR activity in a high-throughput-compatible assay format, representing a novel promising tool for the discovery of potential GPCR therapeutics.
View Article and Find Full Text PDF