Porous silicon is one of the most explored nanostructured materials in various biomedical applications owing to its remarkable properties. However, its inherent chemical instability mandates a robust surface modification procedure, and proper surface bioengineering is essential to ensure its effectiveness in the biomedical field. In this study, we introduce a one-pot functionalization strategy that simultaneously stabilizes porous silicon nanoparticles and decorates their surface with carbohydrates through hydrosilylation chemistry, combining mild temperatures and a Lewis acid catalyst.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs (18-22 nucleotides) that regulate gene expression and are associated with various diseases, including Laryngeal Cancer (LCa), which has a high mortality rate due to late diagnosis. Traditional methods for miRNA detection present several drawbacks (time-consuming steps, high cost and high false positive rate). Early-stage diagnosis and selective detection of miRNAs remain challenging.
View Article and Find Full Text PDFHerein, we evaluated the interaction of the tetracationic porphyrin HTCPPSpm4 with three distinct DNA G-quadruplex (G4) models, i.e., the tetramolecular G4 d(TGGGGT) (Q), the 5'-5' stacked G4-dimer [d(CGGAGGT)] (Q), and a mixture of 5'-5' stacked G-wires [d(5'-CGGT-3'-3'-GGC-5')] (Q).
View Article and Find Full Text PDF