Publications by authors named "I M Morera"

Quantum interference can deeply alter the nature of many-body phases of matter. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive.

View Article and Find Full Text PDF

The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions. However, in kinetically frustrated lattices, itinerant spin polarons-bound states of a dopant and a spin flip-have been theoretically predicted even in the absence of superexchange coupling.

View Article and Find Full Text PDF

Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically, but an experimental demonstration in an extended system has been missing. Here we investigate MoSe/WS van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism.

View Article and Find Full Text PDF

We propose a mechanism for liquid formation in strongly correlated lattice systems. The mechanism is based on an interplay between long-range attraction and superexchange processes. As an example, we study dipolar bosons in one-dimensional optical lattices.

View Article and Find Full Text PDF

The ground-state properties of two-component bosonic mixtures in a one-dimensional optical lattice are studied both from few- and many-body perspectives. We rely directly on a microscopic Hamiltonian with attractive intercomponent and repulsive intracomponent interactions to demonstrate the formation of a quantum liquid. We reveal that its formation and stability can be interpreted in terms of finite-range interactions between dimers.

View Article and Find Full Text PDF