In the present work, for the first time, mechanical activation implemented in a rotor-stator device (RSD) has been used to enhance the formation of the amylоse-fatty acid complex in gelatinized starch at a moderate temperature (40 °C) using oleic acid (ОА) as a model guest compound. Mechanical activation was found to cause an increase in the complexing index from 10 to 30 % for non-activated mixtures to 83-92 %. The study of aqueous and dried starch-OA mixtures using optical and AFM microscopy and dynamic light scattering methods revealed a uniform distribution of amylose-OA complex particles with a size of 125-260 nm in the starch matrix.
View Article and Find Full Text PDFThe aim of this study is to obtain and characterize starch films structurally modified by in situ precipitation of BaSO combined with mechanical activation of casting dispersion in a rotor-stator device. By the rheological method, it was found that the modification causes a decrease in the ability of casting dispersions to structure over time. Composite films with a filler content of 0 %-15 % (w/w) were characterized using optical and SEM microscopy, FT-IR spectroscopy, and tensile and moisture resistance testing data.
View Article and Find Full Text PDFspp. pathogens frequently cause chronic and acute diseases in cats. The aim of the present study was to investigate the presence and genetic diversity of spp.
View Article and Find Full Text PDFIn this article, we examined a high-performance, environmentally friendly method for producing composite films based on starch and natural rubber latex (NR). To increase the compatibility of the components, the casting dispersions were subjected to short-term (10 s) mechanical activation in a rotor-stator device. Using the rotational viscosimetry method, it was found that mechanical activation reduces the structuring degree and the effective viscosity of the casting dispersions.
View Article and Find Full Text PDF