Publications by authors named "I M Bonapace"

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is involved in prostate cancer (PCa) metastatic progression, and its plasticity suggests epigenetic implications. Deregulation of DNA methyltransferases (DNMTs) and several microRNAs (miRNAs) plays a relevant role in EMT, but their interplay has not been clarified yet. In this study, we provide evidence that DNMT3A interaction with several miRNAs has a central role in an ex vivo EMT PCa model obtained via exposure of PC3 cells to conditioned media from cancer-associated fibroblasts.

View Article and Find Full Text PDF

Several studies indicate that semen quality has strongly declined in the last decades worldwide. Air pollution represents a significant co-factor with the COVID-19 impact and has negative effects on the male reproductive system, through pro-oxidant, inflammatory and immune-dysregulating mechanisms. It has recently been reported that chronic exposure to PM2.

View Article and Find Full Text PDF

The epidemic of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted worldwide with its infectious spread and mortality rate. Thousands of articles have been published to tackle this crisis and many of these have indicated that high air pollution levels may be a contributing factor to high outbreak rates of COVID-19. Atmospheric pollutants, indeed, producing oxidative stress, inflammation, immuno-unbalance, and systemic coagulation, may be a possible significant co-factor of further damage, rendering the body prone to infections by a variety of pathogens, including viruses.

View Article and Find Full Text PDF

During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1's role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome.

View Article and Find Full Text PDF