Optical metasurfaces are two-dimensional assemblies of nanoscale optical resonators and could constitute the next generation of ultrathin optical components. The development of methods to manufacture these nanostructures on a large scale is still a challenge, while most performance demonstrations were obtained with lithographically fabricated metasurfaces that are restricted to small scales. Self-assembly fabrication routes are promising alternatives and have been used to produce original nanoresonators.
View Article and Find Full Text PDFBackground: People with Neurofibromatosis Type 1 (NF1) suffer disfigurement and pain when hundreds to thousands of cutaneous neurofibromas (cNFs) appear and grow throughout life. Surgical removal of cNFs under anesthesia is the only standard therapy, leaving surgical scars.
Objective: Effective, minimally-invasive, safe, rapid, tolerable treatment(s) of small cNFs that may prevent tumor progression.
Rationale And Objectives: Brain tumor segmentations are integral to the clinical management of patients with glioblastoma, the deadliest primary brain tumor in adults. The manual delineation of tumors is time-consuming and highly provider-dependent. These two problems must be addressed by introducing automated, deep-learning-based segmentation tools.
View Article and Find Full Text PDFThis paper explores the impact of dysprosium (Dy) doping on structural, optical, and photocatalytic properties of tin oxide (SnO) thin films fabricated spray pyrolysis. Dysprosium doping levels ranged from 0 to 7 at%, and films were grown on glass substrates at 350 °C. X-ray diffraction (XRD) analysis revealed an increase in crystallite size with Dy doping, signifying improved crystalline quality.
View Article and Find Full Text PDF