Polymers (Basel)
November 2024
(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties.
View Article and Find Full Text PDFBackground/objectives: Despite the discovery of antibiotics, bacterial infections persist globally, exacerbated by rising antimicrobial resistance that results in millions of cases, increased healthcare costs, and more extended hospital stays. The urgent need for new antibacterial drugs continues as resistance evolves. Fluoroquinolones and tetracyclines are versatile antibiotics that are effective against various bacterial infections.
View Article and Find Full Text PDFCompounds of natural origin found in varying quantities in plant-based products constitute a highly significant category, possessing structural significance as well as the capacity to regulate oxidative processes. The activity of these compounds may be modulated by the composition of the biological environment in which they operate, the pH of the environment, or the presence of metal cations in plants or plant extracts. A successful complexation reaction was mainly confirmed by FT-IR, observing the shift from the original transmittance of catechin bonds, especially O-H ones.
View Article and Find Full Text PDFThe enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and 4.5 nm and 16.
View Article and Find Full Text PDF