Publications by authors named "I Luk'yanchuk"

Powdery mildew (Sphaerotheca macularis Mag. (syn. Podosphaera aphanis Wallr.

View Article and Find Full Text PDF

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H(ZrTi)O nanowires (HZTO-nw) and BaCaZrTiO multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs.

View Article and Find Full Text PDF

Ferroelectric domain walls provide a fertile environment for novel materials physics. If a polarization discontinuity arises, it can drive a redistribution of electronic carriers and changes in band structure, which often result in emergent 2D conductivity. If such a discontinuity is not tolerated, then its amelioration usually involves the formation of complex topological patterns, such as flux-closure domains, dipolar vortices, skyrmions, merons, or Hopfions.

View Article and Find Full Text PDF

The lead-free BaCaZrTiO (BCZT) relaxor ferroelectric ceramic has aroused much attention due to its enhanced piezoelectric, energy storage and electrocaloric properties. In this study, the BCZT ceramic was elaborated by the solid-state reaction route, and the temperature-dependence of the structural, electrical, piezoelectric, energy storage and electrocaloric properties was investigated. X-ray diffraction analysis revealed a pure perovskite phase, and the temperature-dependence of Raman spectroscopy, dielectric and ferroelectric measurements revealed the phase transitions in the BCZT ceramic.

View Article and Find Full Text PDF

The design of lead-free ceramics for piezoelectric energy harvesting applications has become a hot topic. Among these materials, BaCaZrTiO (BCZT) and BaTiSnO (BTSn) are considered as potential candidates due to their enhanced piezoelectric properties. Here, the structural, electrical, piezoelectric and piezoelectric energy harvesting properties of the (1 - )BaCaZrTiO-BaTiSnO (BTSn, = 0.

View Article and Find Full Text PDF