Allylic oxygenated derivatives of himachalenes are highly valued molecules due to their potential applications in perfumery, cosmetics, and pharmaceuticals. Previous attempts at catalyzed allylic oxidation of himachalenes led to the formation of a very stable η-allyl palladium complex, preventing any further reaction development. Herein, we present the first successful palladium-catalyzed synthesis of a novel allylic acetoxylated derivative of himachalenes.
View Article and Find Full Text PDFWe report the synthesis of two novel halogenated nitro-arylhimachalene derivatives: 2-bromo-3,5,5,9-tetramethyl-1-nitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (bromo-nitro-arylhimachalene) and 2-chloro-3,5,5,9-tetramethyl-1,4-dinitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (chloro-dinitro-arylhimachalene). These compounds were derived from arylhimachalene, an important sesquiterpene component of Atlas cedar essential oil, via a two-step halogenation and nitration process. Characterization was performed using H and C NMR spectrometry, complemented by X-ray structural analysis.
View Article and Find Full Text PDFIn this study, we report the first total hemisynthesis of trans-himachalol sesquiterpene, a stereoisomer of the natural cis-himachalol isolated from Cedrus atlantica essential oils, from himachalenes mixture in five steps. Reactions conditions were optimized and structures of the obtained compounds were confirmed by IR, mass spectra, H, and C NMR. The synthesized compounds were investigated for potential activities on various isolated smooth muscles and against different neurotransmitters using molecular docking.
View Article and Find Full Text PDF