J Phys Chem C Nanomater Interfaces
August 2024
Electrochemical SERS of pyridine adsorbed on a silver electrode has been analyzed by comparing the spectra to the calculated normal Raman and resonance Raman intensities of model systems of pyridine bonded to linear silver clusters with different densities of charge through the nitrogen (Ag-NPy) or flipped through the hydrogen in the para-position (Ag-HPy). The changes observed in the ν(CH) region of the SERS have been investigated for the first time and related to a molecular reorientation at negative surface excess of charge of the metal in such a way that the ν(CH) bands with the highest (mode 2) and lowest (mode 13) wavenumber dominate this spectral region at positive or negative electrode potentials, respectively. The calculations support that the ν(CH) region is dominated by a specific vibration depending on pyridine orientation and suggest that both species coexist in the SERS recorded at negative potentials.
View Article and Find Full Text PDFWe present a computational model for electrochemical surface-enhanced Raman scattering (EC-SERS). The surface excess of charge induced by the electrode potential () was introduced by applying an external electric field to a set of clusters [Ag] with (, ) of (19, ±1) or (20, 0) on which a molecule adsorbs. Using DFT/TD-DFT calculations, these metal-molecule complexes were classified by the adsorbate partial charge, and the main -dependent properties were simultaneously studied with the aid of vibronic resonance Raman computations, namely, changes on the vibrational wavenumbers, relative intensities, and enhancement factors (EFs) for all SERS mechanisms: chemical or nonresonant, and resonance Raman with bright states of the adsorbate, charge-transfer (CT) states, and plasmon-like excitations on the metal cluster.
View Article and Find Full Text PDFSilver nanoparticles functionalized with thiolated β-cyclodextrin (CD-SH) were employed for the detection of bisphenols (BPs) A, B, and S by means of surface-enhanced Raman spectroscopy (SERS). The functionalization of Ag nanoparticles with CD-SH leads to an improvement of the sensitivity of the implemented SERS nanosensor. Using a multivariate analysis of the SERS data, the limit of detection of these compounds was estimated at about 10 M, in the range of the tens of ppb.
View Article and Find Full Text PDFThe detection of emerging contaminants in the aquatic environment, such as ibuprofen and caffeine, was studied by means of surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticles (AgNPs) synthesized with β-cyclodextrin (βCD) as a reducing agent. The effect on the SERS signal of different molar ratios of Ag/βCD in the synthesis route and the aging process of AgNPs were investigated by using trans-cinnamic as a test molecule. The SERS effectiveness of these β-cyclodextrin colloids (Ag@βCD) was also checked and compared with that of other silver sols usually employed in SERS synthesized by using other reducing agents such as citrate, borohydride and hydroxylamine.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2021
Surface-enhanced Raman scattering of thiobenzoic acid and thiobenzamide have been recorded on three different silver colloids in order to find the chemical species responsible for the spectra and to detect differences in the adsorption with respect to their oxygen counterparts, benzoic acid and benzamide, respectively. Very significant and unexpected shifts of opposite sign between the Raman and SERS wavenumbers have been detected. By comparing the experimental and DFT calculated wavenumbers, it can be concluded that the acid is bonded to the metal as thiobenzoate through the sulfur atom with unidentate coordination.
View Article and Find Full Text PDF