Publications by authors named "I Lemasson"

Infection with human T-cell leukemia virus type 1 (HTLV-1) can produce a spectrum of pathological effects ranging from inflammatory disorders to leukemia. In vivo, HTLV-1 predominantly infects CD4 T-cells. Infectious spread within this population involves the transfer of HTLV-1 virus particles from infected cells to target cells only upon cell-to-cell contact.

View Article and Find Full Text PDF

The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse.

View Article and Find Full Text PDF

Adult T-cell leukemia and lymphoma (ATLL) is an intractable T-cell neoplasia caused by a retrovirus, namely human T-cell leukemia virus type 1 (HTLV-1). Patients suffering from ATLL present a poor prognosis and have a dearth of treatment options. In contrast to the sporadic expression of viral transactivator protein Tax present at the 5' promoter region long terminal repeats (LTR), HTLV-1 bZIP gene (HBZ) is encoded by 3'LTR (the antisense promoter) and maintains its constant expression in ATLL cells and patients.

View Article and Find Full Text PDF

HBZ is expressed by the complex retrovirus, Human T-cell Leukemia Virus type 1, and implicated in pathological effects associated with viral infection. From the nucleus, HBZ alters gene expression by interacting with a variety of transcriptional regulatory proteins, among which is c-Jun. Previously, one of the three HBZ variants, HBZ, was reported to decrease c-Jun expression by promoting its degradation.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) causes multiple pathological effects, ranging from a form of leukemia to a spectrum of inflammation-mediated diseases. These diseases arise from one or several infected CD4 T cells among thousands acquiring proliferation and survival advantages and ultimately becoming pathogenic. Given the low incidence of HTLV-1-associated diseases among carriers, such cellular evolutionary processes appear to occur rarely.

View Article and Find Full Text PDF