The relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated, systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food environments, and the built environment.
View Article and Find Full Text PDFBackground: Obesity is a major public health problem globally and in Europe. The prevalence of childhood obesity is also soaring. Several parameters of the living environment are contributing to this increase, such as the density of fast food retailers, and thus, preventive health policies against childhood obesity must focus on the environment to which children are exposed.
View Article and Find Full Text PDFFast self-reported eating rate (SRER) has been associated with increased adiposity in children and adults. No studies have been conducted among high-school students, and SRER has not been validated vs. objective eating rate (OBER) in such populations.
View Article and Find Full Text PDFObesity is a complex disease and its prevalence depends on multiple factors related to the local socioeconomic, cultural and urban context of individuals. Many obesity prevention strategies and policies, however, are horizontal measures that do not depend on context-specific evidence. In this paper we present an overview of BigO (http://bigoprogram.
View Article and Find Full Text PDFBackground: Obesity interventions face the problem of weight regain after treatment as a result of low compliance. Mobile health (mHealth) technologies could potentially increase compliance and aid both health care providers and patients.
Objective: This study aimed to evaluate the acceptability and usability and define system constraints of an mHealth system used to monitor dietary habits of adolescents in real life, as a first step in the development of a self-monitoring and lifestyle management system against adolescent obesity.